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Abstract 

In this project, we investigated the possibility to reduce green house emission 
(mainly CO2) from urban highways by adaptive ramp meter control. QUADSTONE 
PARAMICS software was used to build a microscopic traffic model for a 4-lane highway 
section containing on/off ramps. A mathematical model of CO2 emission as a function of 
vehicle’s speed and acceleration was also developed. Total emission of simulated 
highway section was calculated under on a variety of ramp meter control scenarios and 
traffic densities.  

It has been found that the emission rate of greenhouse gases varies non-linearly 
with vehicle’s speed. While vehicles move at relatively high speed (i.e. greater than 50 
mph), the emission rate increases monotonically with speed of vehicle. On the other hand, 
when vehicles move at extremely low speed (i.e. less than 20 mph), the emission rate is 
reversely proportional to vehicle’s speed. In addition, vehicle’s acceleration also plays an 
important role. This non-linear behavior of emission rate indicates the possibility to 
optimize greenhouse emission through smart speed and mobility control on urban 
corridors.  

A test model of a 1.5-mile 4-lane highway section with one on-ramp and one off-
ramp was developed. A fixed time ramp meter is placed on the on-ramp and simulated 
the model at different scenarios by adjusting the red-time interval of the meter. It is 
observed that in light or moderate traffic senarios, the optimal red time interval increases 
with traffic density. However, when the traffic becomes very heavy or jammed, the 
optimal red time actually decreases. Our simulation also shows the overall emission 
decreases with highway speed limit. The fact that the red time interval needs to be 
reduced under heavy traffic in order to reduce CO2 emission indicates a trade-off between 
improving highway throughput and reducing CO2 emission. Optimization plans solely 
targeting for higher throughput not necessarily leads to lower emission, on the contrary, it 
may increase the emission in some cases.  

It is also observed that implementing ramp meter control works better for heavy 
traffic situations than light traffic ones; while speed limit control works better for light 
traffic situations. This suggests implementing both active ramp meter control and active 
speed control could potentially minimize the average emission.  
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Introduction 
While “global warming” gradually turns into a fact rather than a hypothesis, 

people are more and more concerned about the greenhouse emissions generated from 
both civil and industrial sources. President Obama pledged at the United Nations 
conference in Copenhagen on climate change to reduce American greenhouse emissions 
by 17 percent by 2020 compared with 2005 level. This has stimulated many activities in 
both city- and state-levels aiming at reducing greenhouse gas emission from a variety of 
sources.  

 
Although electricity generation, industrial wastes, neighborhood activities (dry 

cleaners, lawn mowers etc) and farming all contribute to the greenhouse emissions in 
southern California, automobile emission remains to be the most challenging problem 
due to the rapidly increasing populations and expanding urban areas during recent 
decades. This stems from the use of gasoline for power. The burning of cheap, ordinary 
gasoline gives off not only pollutants (hydrocarbons (HC), carbon monoxide (CO), and 
nitrogen oxides (NO)) [1], but also carbon dioxide (CO2) which is considered the major 
factor for global warming. These products contribute greatly to smog, ozone, cancer, lung 
disease, illness, and the greenhouse effect. A gallon of gasoline is assumed to produce 8.8 
kilograms (or 19.4 pounds) of CO2 [2]. In cities such as Los Angeles, California, the 
problem is extremely apparent due to the large population of automobile vehicles. 

 
While replacing existing gasoline based vehicles with those using clean energy 

sources is the ultimate solution, it is rather a long term process especially in the economic 
downturn now. Therefore, the most obvious solution is to reduce the number of vehicles 
on road by providing public transportation etc. However, due to highly distributed 
neighborhoods and business areas, public transportation can satisfy only a very limited 
percentage of residence, therefore reducing number of vehicles on road has limited 
success in southern California areas. Nevertheless, there is another option we may chose: 
reduce the greenhouse gas emission through intelligent operation control on urban 
corridors, including highways and major local roads. It has been reported that the rate of 
greenhouse emission from running vehicles highly correlates with their speed as well as 
acceleration [3,4]. Moreover, the emission rate is also tightly correlates to the vehicle 
type, for example, heavy trucks emit 4 times more than passenger cars on average [4-6]. 
The difference may enlarge during stop-and-go conditions as heavy vehicles need more 
propulsion to accelerate. An intuitive learning from these facts is that if all vehicles are 
moving smoothly (without frequent accelerations and brakes) at a moderate speed, the 
overall emission will be minimized. This can be achieved by implementing a variety of 
intelligent operation strategies, such as adaptive ramp meter control.  

 
California is one of very few states that started intelligent transportation systems’ 

(ITS) implementation in 70’s. Nowadays, California already has relatively matured ITS 
infrastructures, including Freeway management systems, Incident management systems, 
Arterial management systems etc. California also took lead in the development of a 
performance measurement system (PeMS) that will serve transportation professional and 
decision makers to actively control the mobility on corridors based on real-time road 
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conditions. Adaptive ramp meter is just one example of these intelligent operations 
strategies.  

Current studies on adaptive roadway controls aims mostly on improving traffic 
efficiency or highway mobility [8-12]. Controller design methods vary from artificial 
neuron networks [8-9], model predictive control [10-11, 13] to fuzzy logic [12]. Few of 
them take greenhouse emissions into consideration. A recent work of Zegeye [13] 
considers optimizing pollutant emissions on roadways through active speed limit control. 
Although the road model they considered in this work is a simple straight road without 
ramp and local roads, they illustrate that a traffic control strategy aiming solely at 
reduction of total time spent does not necessarily reduce the level of emission. B. Park et. 
al [16] compared the average fuel consumption between strategies aiming to reducing 
queuing time and strategies aiming to minimize fuel consumption on local arterials. They 
also concluded that strategies aiming to reduce queuing time not necessarily reduce 
emission. So a specific controller aiming at reducing emission is necessary. This proposal 
contributes to the field by considering a comprehensive highway model with on/off 
ramps and an adjustable ramp meter. The roadway control is achieved by ramp meter 
control, which is more practical now compared with active speed control.  Our goal is to 
monitor the effect of ramp meter control on total greenhouse emission, therefore, suggest 
a feasible road control strategy in terms of minimizing the greenhouse emission. 

 

Methodology 

 Data Collection 

Collecting real world traffic data, such as incoming traffic flows, class of vehicles and 
percentage, speed of movement, traveling time in construction zone, is necessary to build 
a model that produces reliable results. In this project, two types of data are needed, 
vehicle greenhouse gas emission data and the real world traffic data.  

1. Vehicle Emission 

The CO2 emission data were collected through internet resources. Nowadays, 
all vehicles on market are required to be accompanied by a parameter called 
global warming score. Therefore, the CO2 emission of each type of vehicle could 
be found from a variety of websites [4-6]. This eases our data collection 
significantly.  To further simplify our microscopic model (will be explained in 
next session), we categorized the vehicles into 6 categories, including Cars, SUVs, 
Hybrid vehicles, Light-duty trucks, Buses and Cargo Trucks. The collected 
emission data for each type of vehicle are then scaled to speed dependent profile 
according to [15]. Figure 1 shows emission vs. speed plot for passenger cars. This 
result is an average of 11 different models of gasoline passenger cars, including 
Honda, Toyota, Audi and many more. SUVs, Pick-up trucks, Hybrid vehicles, 
Cargo trucks and Buses all show a similar trend of variation as a function of speed.  
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Figure 1 Passenger Car CO2 emission rate (grams/mile) as a function of speed [4-6]. 

In addition to speed, acceleration is another factor affecting CO2 emission. 
Speed variation is expected frequently on urban corridors, especially in crowded 
LA area. Therefore, consideration of instantaneous acceleration will improve the 
validity of our model. Panis et al. has developed a model of CO2 emission as a 
function of acceleration [14]. Their model is scaled and combined with our 
velocity data for our CO2 emission calculation.  

 

2. Traffic Data 

Collecting real world traffic data, such as incoming traffic flows, class of 
vehicles and percentage, is necessary to build a microscopic traffic model that 
produce reliable results. For this part of data collection, we used video monitoring 
method. We placed digital camcorder on interested roadway sections at selected 
time of day. We took video recording of I-710 south bound at 9:00am, 12:00pm, 
4:00 pm and 7:00pm. Each video recording was about 20 minutes long. The 
vehicle counts and vehicle type are then documented by observation. The data are 
collected at 4 different locations: before the on ramp, on the on-ramp, on the off 
ramp and after the off-ramp. The raw data is then formatted into Origin-
Destination matrix as shown in Table 1. Figure 2 below shows some snapshots of 
our raw video recording.  
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Figure 2 Video snapshots on I-710 southbound. 

 

 Model Development 
In this project we modeled a 1.5 mile long, 4-lane highway section, single direction, 

with an on-ramp and an off-ramp using PARAMICS software.  

 PARAMICS Software 

PARAMICS software (by QUADSTONE) is a microscopic  traffic  simulation  
package,  which  supply  powerful  modeling  ability  to  simulate  complicated  road  
networks  and  monitor  individual  section  of  highways . In PARAMICS, the 
instantaneous traffic data, such as traffic flow, instantaneous velocity and instantaneous 
acceleration, are collected by placing loop detectors on interested locations. The collected 
data are in .cvs format as a function of time. This eases the total emission calculation as 
the total emission rate is not only changing with velocity, but also the acceleration. 
Moreover, the emission needs to be monitor at each time point and summed to reach the 
total emission. So, a velocity and acceleration data at individual time point is necessary.  

In PARAMICS, the traffic flow is controlled by Origin-Destination Matrix (OD 
Matrix), i.e. the number of vehicles moving from a certain Origin to a certain Destination. 
The OD matrix is derived from the collected traffic data. Placing a Ramp meter signal is 
also convenient in PARAMICS. The signal profile, i.e. red interval and green interval, 
can be easily adjusted to monitor different control strategies.  
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Due to the above characteristics of PARAMICS software package, Paramics is then 
selected to build our microscopic traffic model.  

 Traffic Model Configuration 

Figure 3 shows a configuration of the road section to be modeled. Detectors are 
placed on main highway only. Each lane is monitored by its individual detectors.  

 

 

 

Figure 3 Road configuration of a 4 lane highway section with one on ramp and one off 
ramp.  

Figure 4 shows a screen shot of the PARAMICS model. The left hand side panel is 
the complete view of the road model. Zone 1 is the incoming origin of highway, zone 2 is 
the destination of highway, zone 3 is the origin of on-ramp, zone 4 is the destination of 
off-ramp. The OD matrix controls the number of vehicles traveling between zones. The 
top right panel is the blow-up of detectors. It can be seen that the detectors are equally 
spaced. The bottom right panel is the blow-up of ramp meter signal. The signal in 
PARAMICS could be either a 3 phase signal (green-yellow-red) or a two phase only 
(green-red). In this case, since we are modeling a ramp meter, a two phase signal profile 
is used with fixed green time interval.  
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Figure 4 Screen shot of PARAMICS model.  

 

Table 1 displays the OD matrix used for a typical traffic density, 40000 vehicles per 
hour. In our model, six types of vehicles are considered, i.e. cars, hybrid vehicles, SUVs, 
Light-duty trucks, Buses and Cargo trucks. A specific OD matrix is used for each of them. 
The matrix displays the number of vehicle traveling from a specific original zone to a 
specific destination zone. The vertically numbered zones are origins and the horizontally 
numbered zones are destinations.  
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Table 1 Origin-Demand Matrix for 6 types of vehicles for 40000 vehicle/hour simulation 

Zone 1 2 3 4

1 0 15452 0 900

2 0 0 0 0

3 0 1000 0 0

4 0 0 0 0

Zone 1 2 3 4

1 0 3784 0 208

2 0 0 0 0

3 0 192 0 0

4 0 0 0 0

Zone 1 2 3 4

1 0 8652 0 444

2 0 0 0 0

3 0 504 0 0

4 0 0 0 0

Zone 1 2 3 4

1 0 3728 0 176

2 0 0 0 0

3 0 156 0 0

4 0 0 0 0

Zone 1 2 3 4

1 0 4256 0 160

2 0 0 0 0

3 0 256 0 0

4 0 0 0 0

Zone 1 2 3 4

1 0 132 0 0

2 0 0 0 0

3 0 0 0 0

4 0 0 0 0

Cars

Hybrid

SUV

Pickup

Cargo

Bus
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 Traffic Model Calibration 

The model calibration was done by tuning the global simulation parameters with 
the goal to minimize the vehicle count different at specific locations between video 
observation and simulation. The parameters being adjusted include: queue gap 
distance, queuing speed and mean driver reaction time. After calibration, the queue 
gap distance is set at 8.00 ft; queuing speed is set at 9.00 mph; and mean driver 
reaction time is set at 0.45 s. The default values for those parameters are 32.81 ft, 
4.47 mph and 1.00 s, respectively. The huge difference between default and 
calibrated value indicates the necessity for calibration.  

 Emission Model 

The total CO2 emission is then calculated using the following formula.  

  Grams 

Where, 

 i = ith section of the freeway (The freeway is divided in to ‘n’ sections, each of 100m 
length, i.e. 0.06214 mile) 

j = jth vehicle type 

Nj = Number of vehicles of type ‘j’ (on the freeway section i) 

Yj = Emission from the vehicle of jth type 

 

j=1: REGULAR CARS  

Y1=Max [0, A1 + A2 Vn(t) + A3 Vn(t)² + A4.An(t) + A5.An(t)² + A6 An(t).Vn(t)] 

 

j=2: HYBRID CARS  

Y2= Max [0, B1 + B2 Vn(t) + B3 Vn(t)² + B4.An(t) + B5.An(t)² + B6 An(t).Vn(t)] 

 

j=3: SUVS 

Y3= Max [0, C1 + C2 Vn(t) + C3 Vn(t)² + C4.An(t) + C5.An(t)² + C6 An(t).Vn(t)] 

 

j=4: PICKUP TRUCKS  

Y4= Max [0, D1 + D2 Vn(t) + D3 Vn(t)² + D4.An(t) + D5.An(t)² + D6 An(t).Vn(t)] 
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j=5: BUSES 

Y5= Max[0, E1 +E2 Vn(t) +E3 Vn(t)² + E4 An(t) + E5.An(t)² + E6 An(t).Vn(t)] 

 

j=6: CARGO TRUCKS 

Y6= Max[0, F1 + F2 Vn(t) + F3 Vn(t)² + F4.An(t) + F5.An(t)² + F6 An(t).Vn(t)] 

   

, where Vn(t) represents Instantaneous Speed (mile/hr). 

  An(t) represents Instantaneous Acceleration (ft/s2). 

 

Table 2 Model Coefficient for 6 types of vehicles.  

i= 1 2 3 4 5 6 

Ai 887.22 -34.979 0.4304 4.87 2.86 2.08 

Bi 522.4 -20.596 0.2535 4.09 2.99 1.27 

Ci 928.15 -36.593 0.4503 5.09 2.99 2.18 

Di 1061.6 -41.854 0.5151 5.82 3.42 2.49 

Ei 3342.6 -131.78 1.6217 23.29 13.68 9.97 

Fi 4240.3 -167.18 2.0572 23.28 13.72 9.93 

 

In Figure 5, we plot the modeled vehicle emission as a function of velocity only (set 
acceleration to zero).  
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Figure 5 Modeled Emission vs velocity plots. 

In Figure 6, we present the CO2 emission as a function a acceleration only (set 
velocity to 65mph).  



11 

 

 

Figure 6 Emission vs Acceleration plot with velocity fixed at 65mph.  

Results and Discussion 

 Effect of Red Time interval 
 

To study the effect of ramp meter’s red time interval, we first simulated a light 
traffic scenario, i.e. 20000 vehicles/hour. The speed limit is set to 65 mph, which is 
the current speed limit on I-710. The ramp meter’s red time interval is then tuned 
to 0s, 5s, 10s, 15s, and 20s, respectively, and the point data results are collected. 

  
Each loop detector in the network will generate 4 point data files, one for each 

lane. At each detector location, a vehicle specific emission rate is calculated by 
applying the vehicle specific formula described earlier in this report. It is assumed 
that the vehicle maintains the same emission rate until it reaches the next detector, 
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where the emission rate is calculated again. The emission rate is then multiplied by 
the distance between detectors (0.06214 mile in our case) and divided by total 
vehicle counts to give average emission per vehicle. Table 3 gives a snapshot of a 
cleaned point data file after sorted by vehicle types.  The program is set to collect 
point data every 2 seconds and the simulation time is set to 2 hours.  

 
Table 3 Snapshot of cleaned simulation data for 20000 vehicle/hour, red time interval=0s.  

Time Type ID Flow Headway Gap Speed Acc

170.09 23 17 1475 2.441 2.18 70.706 ‐0.001

177.14 23 46 510 7.054 6.864 69.214 ‐0.011

180.7 23 28 1359 2.65 1.941 69.914 ‐0.025

183.99 23 26 1094 3.291 3.098 66.444 0

186.11 23 25 3121 1.153 0.917 66.643 0.596

191.84 23 49 3428 1.05 0.772 64.35 0

194.69 23 27 3626 0.993 0.749 64.673 1.071

195.75 23 60 3418 1.053 0.845 65.074 1.833

198.83 23 47 3631 0.991 0.751 65.145 ‐0.004

199.87 23 80 3431 1.049 0.843 65.147 ‐0.007

200.47 23 56 6053 0.595 0.389 65.071 ‐0.016

 
CO2 emission is then calculated for each ramp meter timing scenario and the 

result is plotted in Figure 7.  
 

 
 

Figure 7 Emission vs. Red time interval of ramp meter for 20000 vehicle/hour scenario.  
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Under light traffic senario, the average emission drops to a minimum if the red 
time interval of ramp meter is set to 5s. This indicates it is feasible to minimize the 
emission on highway by adjusting ramp meter timing. Further prolonging the red 
time interval results in increased average emission.  This probably because all 
vehicles are moving relatively smoothly in light traffic situation, therefore, the 
average speed becomes the dominant factor for overall emission. As we increase 
the red time interval, less vehicles get onto main freeway. This results in higher 
average speed since most of the drivers tends to drive at or beyond the speed limit 
(65mph). From the emission profile presented in Figure 1, one can observe the 
vehicle emission is larger than average at 65 mph. Therefore, the emission shows 
an increasing trend as we increase the red time interval. This result suggests the 
ramp meter timing should be adjusted to shorter red time interval during light 
traffic in order to minimized the average emission.  

 Effect of Traffic Density 
We then ran the simulation for a variety of traffic density using scales 

distribution of vehicle types. The results are summarized in Figure 8.  
 

 
 

Figure 8 Emission vs. Ramp meter red time for different traffic density.  

Let’s first focus on the optimal red time interval. It can be observed that ramp 
meter red time interval have an impact on vehicle emission for all traffic density. 
However, the optimal red time interval varies significantly among different traffic 
densities.  For example, the optimal red time interval for 20000 vehicle/hour 
senario is 5 seconds, but it is 15 seconds for 40000 vehile/hour senario; 20 seconds 
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for 60000 vehicle/hour senario and 10 seonds for 80000 vehicles/hour senario. To 
further discuss the impact of traffic density on optimal red time interval, we plot 
the optimal red time interval vs. traffic density in Figure 9.  

 
A typical jam-free traffic density is considered to be 50-60 vehicles per mile 

per lane. On the other hand, 200-250 vehicles per mile per lane can be considered 
jam. In our model, we are considering a 4 lane highway with a speed limit of 
65mph. After a simple conversion, 13000 to 15600 vehicle per hour can be 
considered light (or jam-free) traffic; and 52000 to 65000 vehicle per hour can be 
considered jam. In our simulations, 20000 vehicle/hour senario could be 
considered as light traffic, 40000 vehicle/hour and 60000 vehicle/hour senarios 
could be considered as moderate traffic,  and 80000 vehicle/hour senario is 
considered heavy (jammed) traffic.  

 

  
 

Figure 9 Optimal Red time interval v. Traffic density. Speed limit is 65mph; green 
time interval is 5 seconds.  

From Figure 9, we can see that in light or moderate traffic senarios, the 
optimal red time interval increases with traffic density. However, when the traffic 
becomes very heavy or jammed, the optimal red time actually decreases. In light 
traffic, as we mentioned in previous section, the speed is the dominant factor for 
average emission because there are very few stop-and-go situations. Over-adjust 
the red time interval results in higher average speed on main lanes, therefore, 
higher emission. In moderate traffic, it is observed that the overall trend of 
emission is reducing with increase of red time interval. This is because the 
vehicle’s movement is no longer as smooth as in ligh traffic situation. Some stop-
and-go can be observed during our simulation. Therefore, increasing red-time 
interval could ease this situation by allowing few vehicle get onto the main lanes. 
However, when traffic is already jammed on main lanes, i.e. the heavy traffic 
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senario. Limiting the number of vehicles getting into the freeway could not 
effectively reduce the number of stop-and-gos. On the other hand, it may give 
chances for drivers to do more frequent accelarations, as they see more spaces in 
front of them. Therefore, prolonging the red-time interval beyond threshold will 
increase the emission.  

 

 
Figure 10 Emission vs. Ramp meter red time interval for 20K/hr, 40K/hr, 60K/hr 
and 80K/hr.  

In Figure 10, we combine the emission data of all traffic density scenarios into 
one plot. As the traffic density increases, the average emission decreases. This is 
indicates that the average speed dominates CO2 emission more than the 
acceleration does. In heavier traffic, the overall speed of the vehicles is reduced, 
which explains the reduction in emission.  

Another question we may ask here is: how effective the ramp meter control is 
compared with ambient scenarios in terms of CO2 emission. Implementing ramp 
meter control is costly; therefore, we want to know how much we could benefit 
from that. Here, we use the difference between optimized emission  and ambient 
emission (i.e. not ramp meter at all) to measure the effectiveness. For example, in 
40000 vehicle/hour scenario, ambient emission is 1374.66 gram, while the 
optimized emission is 1257.7. The effectiveness of ramp meter control is 116.76 
gram per vehicle in term of CO2 reduction. Figure 11 plots the effectiveness as a 
function of traffic density. The effectiveness increases with traffic density. This 
result suggests implementing ramp meter control to heavy traffic density situations 
tend to achieve better return. 
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Figure 11 Effectiveness of ramp meter control vs. Traffic density. Effective is calculated 
using the ambient emission minus the optimized emission in gram.  

 Effect of Speed Limit 
From the simulation of 65mph scenario, we observed that speed is the 

dominant factor controlling the CO2 emission. A direct speed control strategy is to 
regulate speed limit. We then conducted simulation for a series of hypothetical 
speed limits, i.e. 60mph and 55mph. Figure 12 and Figure 13 displays emission 
result for light traffic situation (20000 vehicle/hour), moderate traffic situation 
(40000 vehicle/hour) and heavy traffic situation (80000 vehicle/hour), respectively.   

 

 
Figure 12 Light Traffic Scenario -- Average emission is plotted as a function of red time 
interval, for 65mph, 60mph and 55 mph scenarios, respectively.  
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Figure 13 Moderate Traffic Scenario -- Average emission is plotted as a function of red 
time interval, for 65mph, 60mph and 55 mph scenarios, respectively. 

 
Figure 14 Heavy Traffic Scenario -- Average emission is plotted as a function of red 
time interval, for 65mph, 60mph and 55 mph scenarios, respectively. 

Overall, the average emission per vehicle decreases as we reduce the speed 
limit. This agrees with previous our previous findings, indicating speed is the 
dominant factor in terms of CO2 emission. Obviously, the speed control has more 
significant effects on light traffic. Our results show that reducing speed limit from 
65mph to 55mph could reduce the overall emission by nearly 20% for light traffic 
situation; but only 8% emission reduction is observed for heavy traffic situation. 
This is kind of opposite to ramp meter control. In previous section, we 
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demonstrated that implementing ramp meter control works better for heavy traffic 
than light traffic situations.  

 

Concluding Remarks 
 

We developed a mathematical model of CO2 emission as a function instantaneous 
speed and acceleration. A Paramics model of a 1.5 mile 4-lane highway section 
containing one on-ramp (metered) and one off-ramp is developed and simulated under 
different traffic density scenarios and ramp meter control strategies. It is observed that in 
light or moderate traffic senarios, the optimal red time interval increases with traffic 
density. However, when the traffic becomes very heavy or jammed, the optimal red time 
actually decreases. Our simulation also shows the overall emission decreases with 
highway speed limit. The fact that the red time interval needs to be reduced under heavy 
traffic in order to reduce CO2 emission indicates a trade-off between improving highway 
throughput and reducing CO2 emission. Optimization plans solely targeting for higher 
throughput not necessarily leads to lower emission, on the contrary, it may increase the 
emission in some cases.  

 
It is also observed that implementing ramp meter control works better for heavy 

traffic than light traffic situations; while speed limit control works better for light traffic 
situations. This suggests implementing both active ramp meter control and active speed 
control could potentially minimize the average emission.  

 
Nevertheless, this model only represents a very small section of highway. Factors 

such as curvature of ramp, effects of local arterial signals and coordination between 
adjacent exit/entry are not considered in this model. Moreover, the emission from 
vehicles waiting on ramp is not considered. We are planning to develop a more 
comprehensive model containing multiple entry/exits and local arteries connected to 
on/off ramp in the near future. The comprehensive model will not only provide more 
practical suggestions on ramp meter control, but also provide the opportunity to study the 
effect of coordination between adjacent ramps on greenhouse emission.  

 
The research findings of this project could be utilized to design an active ramp 

meter control algorithm, which adjust the red time interval of ramp meters according to 
instantaneous traffic density. The optimal red time interval simulated for each traffic 
density could be used as guidelines when setting the parameters of above mentioned 
control algorithm.  
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